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Abstract
We study the asymptotic behaviour of Bohmian trajectories in a scattering
situation with short-range potential V and for wavefunctions � = �ac + �pp ∈
L2(R3) with a scattering and a bound part. It is shown that the set of possible
trajectories splits into trajectories whose long-time behaviour is governed
by the scattering part �ac of the wavefunction (scattering trajectories) and
trajectories whose long time behaviour is governed by the bound part �pp of
the wavefunction (bound trajectories). Furthermore, the scattering trajectories
behave like trajectories in classical mechanics in the limit t → ∞. As an
intermediate step, we show that the asymptotic velocity v∞ := limt→∞ Q/t

exists almost surely and is randomly distributed with the density |�̂out|2, where
�out is the outgoing asymptote of the scattering part of the wavefunction.

PACS number: 03.65.Nk
Mathematics Subject Classification: 81U05, 34E99, 60H30

1. Introduction

Bohmian mechanics [3, 6, 9–11] is a theory of particles in motion that is experimentally
equivalent to quantum mechanics whenever the latter makes unambiguous predictions [10].
While Bohmian trajectories are in general highly non-Newtonian, we will show that, in
the special context of potential scattering theory, the long-time asymptotes of the trajectories
associated with scattering wavefunctions are classical straight lines with an asymptotic velocity
v∞ that is randomly distributed with the density |�̂out|2, where �out is the outgoing asymptote
of the wavefunction and̂denotes Fourier transformation.

In Bohmian mechanics, the state of a spinless, non-relativistic particle is described by
its (normalized) quantum mechanical wavefunction �t(q), where q ∈ R

3, and by its actual
configuration (its position) Q ∈ R

3.
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The wavefunction evolves according to the Schrödinger equation

ih̄
∂�t

∂t
= H�t (1)

and governs the motion of the particle by

dQ

dt
= v� (Q, t) := h̄

m
Im

(∇�t(Q)

�t(Q)

)
. (2)

Here m is the mass of the particle. In (1) H is the usual non-relativistic Schrödinger Hamiltonian

H = − 1

2m
� + V (q) =: H0 + V (q) (3)

with the non-relativistic interaction potential V.1 From now on, we shall use natural units
m = h̄ = 1.

For a wavefunction � the actual configuration Q is randomly distributed according to
the equivariant probability measure P

� on configuration space given by the density |�(q)|2
(Born’s statistical rule); see [11]. Roughly speaking this means that a typical Bohmian
trajectory will always stay in the main part of the support of � (see subsection 2.1).

We shall look at scattering situations where V is a sufficiently smooth short-range potential
falling off like |q|−4−ε for some ε > 0 and |q| → ∞. This of course includes the case of free
motion (V ≡ 0).

For scattering wavefunctions �ac
t in Hac(H), the absolute continuous spectral subspace,

we show that P
�ac

0 -almost all Bohmian trajectories behave like classical (Newtonian)
trajectories for t → ∞, i.e. their long-time asymptotes are straight lines with a uniform
velocity v∞ = limt→∞ Q(t)

t
. In accordance with orthodox quantum mechanics, we find that

v∞ is randomly distributed with density
∣∣�̂out

0 (·)∣∣2
, where �out

t is the outgoing asymptote of
�ac

t . We shall use the terminology ‘straight line motion’ for motion with uniform velocity.
We give a heuristic argument why this should be so: it is known (see lemma 3) that

the long-time limit (in L2-sense) of a scattering wavefunction �ac
t is a local plane wave

ϕ1 = (it)−
3
2 exp

(
i q2

2t

)
�̂out

0

(
q

t

)
. So the support of �ac

t essentially moves out to spatial infinity
linear in time. But then a typical Bohmian trajectory Q (that stays in the main part of the
support of �ac

t ) will move out to infinity linear in time, too, that is Q
t

= O(1) for large times t.
An estimate on the asymptotic behaviour of the velocity v�ac

(Q, t) of such a typical trajectory
Q is provided by

vϕ1(Q, t) = Im

(∇ϕ1(Q, t)

ϕ1(Q, t)

)
. (4)

Rewriting ϕ1 in complex polar coordinates, i.e.

ϕ1(q, t) = R(q, t) ei( q2

2t
+S(

q

t
))

with R and S real valued, and keeping in mind that Q
t

= O(1) we get

v�ac
(Q, t)

t→∞= vϕ1(Q, t) = Q

t
+

1

t
∇kS(k)

∣∣∣∣
k= Q

t

t→∞= Q

t
. (5)

But dQ
dt

= v(Q, t) = Q
t

defines straight line motion.
Moreover, we show that classical behaviour of Bohmian trajectories in the limit t → ∞

arises also for wavefunctions �t = �
pp
t + �ac

t with a bound part �
pp
t in Hpp(H), the pure

1 More rigorously: H is a self-adjoint extension of H |C∞
0 (�) = − 1

2m
� + V (with V : � ⊂ R

3 → R) on the Hilbert

space L2(R3) with domain D(H) (see definition 1).
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pp
t
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Ψ

Figure 1. Splitting of the support of �t = �ac
t + �

pp
t for large times t.

point spectral subspace: we prove that P
�0 -almost all Bohmian trajectories are either (with

probability ‖�ac
0 ‖2) trajectories whose long time behaviour is governed by the scattering

part �ac
t of the wavefunction (scattering trajectories) or trajectories (with probability ‖�pp

0 ‖2)
whose long-time behaviour is governed by the bound part �

pp
t (bound trajectories). Since the

Bohmian equation of motion (2) is not linear in � this is not a trivial result. However, it is
clear heuristically.

On the one hand, it is known (see, e.g., [15, 16]) that the spatial support of the bound
part �

pp
t of the wavefunction stays concentrated around the origin (the scattering centre) for

all times t. Since on the other hand, the support of the scattering part �ac
t of the wavefunction

essentially moves out to infinity linear in time, at large times t there will be two distinct parts
of the support of the whole wavefunction. In figure 1, we drew the situation for the case that
the support of the outgoing asymptote in momentum space �̂out

0 is mainly concentrated away
from zero. Note, however, that what we said above is true even for the case where �̂out

0 is
mainly concentrated around zero, since the only part of the support of �ac

t that stays close to
the scattering centre for all times is that corresponding to �̂out

0 (k) where k is exactly zero.
So a typical Bohmian trajectory should either stay bound or again move out to infinity

linear in time. Moreover, in the first case the scattering part of the wavefunction and in the
second case the bound part of the wavefunction will be negligible. This already gives us
the splitting into bound and scattering trajectories and consequently the asymptotic classical
behaviour of the scattering trajectories (see figure 2).

Note that, since a bound wavefunction �
pp
t stays in the sphere of influence of the potential

V even in the long-time limit, it should depend on the exact form of the potential V and on �
pp
t

itself whether bound trajectories behave like classical trajectories or not. This is a question
that we will not deal with here.

We show, however, that bound trajectories stay inside some ball around the origin with
radius growing sublinear in time, that is we prove that they move out to spatial infinity on a
much larger time scale than scattering trajectories. While this suffices for getting the afore-
mentioned splitting of trajectories and thus the classical behaviour of scattering trajectories, it
is surely not the best possible result on bound trajectories one can expect. We shall deal with
the behaviour of bound trajectories in more detail in a subsequent work.

Another open question is how one could characterize the sets of initial configurations that
lead to bound resp. scattering trajectories. Are they open or closed or neither of both? Are
the starting points of bound trajectories intermixed with those of scattering ones or do they
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Figure 2. Splitting of the Bohmian trajectories made by �t = �ac
t + �

pp
t for large times t.

Scattering trajectories stay outside some ball with a radius growing linear in time (∼t) and become
straight lines asymptotically. Bound trajectories stay inside some ball growing only sublinear in

time (∼ t
1

1+γ for some suitable γ > 0).

form well discernible sets? How does this depend on the dimension (or the symmetry) of the
problem?

Finally, what about more general (scattering or non-scattering) situations? When do
Bohmian trajectories look like classical ones in general ? We consider this question to be the
key question of the classical limit in Bohmian mechanics [2]. It is our conviction that the
methods developed in this paper are naturally fit to give mathematically rigorous results also
in the general case and plan to use them to just that end in the future.

The problem of establishing what intuitively seems clear, that asymptotically particles
move freely on straight lines (for short-range potentials), has been addressed before by Shucker
[17] for stochastic mechanics. Although he proved results for V ≡ 0 only and from those
results one cannot infer the existence of an asymptotic velocity, steps in his proof are also
useful for our case2.

The paper is organized as follows. First we set up the mathematical framework (section 2).
We give a brief account of equivariance (subsection 2.1) and list some results of potential
scattering theory (subsection 2.2). In section 3, we state our results on the asymptotic behaviour
of Bohmian trajectories for pure scattering wavefunctions and for general wavefunctions
�t = �ac

t + �
pp
t (theorem 1 and corollary 1 resp. theorem 2 and corollary 2). Section 4

contains the proof.

2. Mathematical framework

2.1. Equivariance

The dynamical system defined by Bohmian mechanics is naturally associated with a family of
finite measures P

�t given by the densities ρ�t (q) := |�t(q)|2 on configuration space R
3. Let

�t,t0 : R
3 → R

3 be the flow map of (2), i.e., if q is the initial configuration at time t0,�t,t0(q)

is the configuration at time t which q is transported to by (2). Then the density ρt0 := ρ�t0

2 A paraphrase of his results for Bohmian mechanics and an appraisal from the viewpoint of Bohmian mechanics
can be found in [7, p 48].
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is transported to ρt = Ft,t0

(
ρt0

)
:= ρt0 ◦ �−1

t,t0
. We say that the functional �t �→ P

�t , from
wavefunctions to the finite measures P

�t (given by the densities ρ�t ) on configuration space,
is equivariant if the diagram

�t0

Ut−t0−−−−→ �t

↓ ↓
ρ�t0 −−−−→

Ft−t0

ρ�t

commutes [11], i.e. ρt = ρ�t for all times t. Here Ut = e−iHt is the solution map for the
Schrödinger equation (1) and Ft,t0 is the solution map for the natural evolution on densities
arising from (2) (see above).

On the family of measures P
�t we bestow the role usually played by the stationary

‘equilibrium measure’ [11]. Thus P
�t defines our notion of typicality, which by equivariance

is time independent:

P
�t1 (A) =

∫
R

n

χA(q)
∣∣�t1(q)

∣∣2
dq =

∫
R

n

(
χ�t2 ,t1 (A) · �t1,t2

)
(q)|�t1(q)|2 dq

=
∫

R
n

χ�t2 ,t1 (A)(q)
(∣∣�t1

∣∣2 · �t2,t1

)
(q) dq

=
∫

R
n

χ�t2 ,t1 (A)(q)
∣∣�t2(q)

∣∣2
dq = P

�t2
(
�t2,t1(A)

)
, (6)

for all measurable sets A ⊂ R
3. Here χA denotes the characteristic function of A.

From now on we will write

Q(q0, t) := �t,0(q0) (t ∈ R, q0 ∈ R
3)

for the solution of (2) with initial configuration q0.3

2.2. Potential scattering theory

We look at a scattering situation described by a Hamiltonian H = H0 + V,D(H) ⊂ L2(R3),
that is by a self-adjoint extension on L2(R3) of H̃ = − 1

2� + V,D(H̃ ) = C∞
0 (�), where

� = {q ∈ R
3 | V (q) is not singular} and V is a short-range potential, V ∈ (V )n (n � 2):

Definition 1. For n � 2 the following conditions on the potential V will be denoted by
V ∈ (V )n.

(i) V ∈ L2(R3, R).

(ii) V is C∞ except, perhaps, at finitely many singularities.
(iii) There exist ε0 > 0, C0 > 0 and R0 > 0 such that |V (q)| � C0〈q〉−n−ε0 for all |q| � R0.

Here 〈q〉 := (1 + q2)
1
2 .

Clearly the wave operators W± := s − lim
t→±∞

eiHt e−iH0t exist4 and are asymptotically complete

(see, e.g., [13]). W± are called asymptotically complete if their range fulfils

Ran W± = Hc(H) = Hac(H),

where Hc(H) resp. Hac(H) denotes the spectral subspace of L2(R3) that belongs to the
continuous resp. the absolutely continuous spectrum of the Hamiltonian H. Since L2(R3)

3 Without loss of generality we have set t0 = 0.
4 Here s − lim denotes the limit in L2-sense.



8426 S Römer et al

is the orthogonal sum of Hc(H) and Hpp(H) (the subspace that belongs to the pure point
spectrum of H), this implies that a general solution �t = e−iHt�0 of the Schrödinger
equation (1) is at all times t given by the unique decomposition �t = �ac

t +�
pp
t into a scattering

wavefunction �ac
t ∈ Hac(H) and a bound wavefunction �

pp
t ∈ Hpp(H). In addition, all the

spectral subspaces are invariant under the full time evolution e−iHt , so �ac
t = e−iHt�ac

0 and
�

pp
t = e−iHt�

pp

0 .
More importantly, asymptotic completeness of W± guarantees the existence of a unique

outgoing/incoming asymptote �
out/in
t := W−1

± �ac
t for every scattering wavefunction �ac

t . Due
to the so-called intertwining property, HW± = W±H0, �

out/in
t evolves according to the free

time evolution e−iH0t .

3. Asymptotic behaviour of Bohmian trajectories in scattering situations

We consider Hamiltonians H = H0 + V,D(H) ⊂ L2(R3), with V ∈ (V )4. Moreover,
we restrict ourselves to initial wavefunctions that are C∞-vectors5 of H,�0 ∈ C∞(H) =
∩∞

n=1D(Hn). Note that C∞(H) is a core, that is a domain of essential self-adjointness of H.
First we shall look at pure scattering wavefunctions �0 = �ac

0 ∈ Hac(H). We define a
convenient subset of Hac(H) for which we establish our results.

Definition 2. f : R
3 → C is in C if

f ∈ Hac(H) ∩ C∞(H),

〈q〉2Hnf ∈ L2(R3), n ∈ {0, 1, . . . , 3},
〈q〉4Hnf ∈ L2(R3), n ∈ {0, 1, . . . , 3},

where again 〈q〉 := (1 + q2)
1
2 .

Remark 1. Let Hm,s be the weighted Sobolev space

Hm,s := {f ∈ L2(R3) | 〈q〉s(1 − �)
m
2 f ∈ L2(R3)}.

Example conditions for which �0 ∈ C are

(i) V ∈ (V )n for n � 2 and �0 ∈ Hac(H) ∩ C∞
0 (R3\E) where E denotes the set of

singularities of V ,
(ii) V ∈ (V )n for n � 2, V ∈ H4,4 and �0 ∈ (⋃

E>0 Ran(P[0,E])
)⋂

H6,4.

Clearly both sets for �0 are dense in Hac(H).

For �0 ∈ C we show the following.

Theorem 1. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance6 of H. Let �0 ∈ C. Then

(i) the Bohmian trajectories Q(q0, t) exist globally in time for P
�0 -almost all initial

configurations q0 ∈ R
3.

5 Some special C∞-vectors are eigenfunctions and ‘wave packets’ � ∈ Ran(P[E1,E2]) with P[E1,E2] the spectral
projection of H to the finite energy interval [E1, E2].
6 Zero is a resonance of H if there exists a solution f of Hf = 0 such that 〈·〉−γ f ∈ L2(R3) for any γ > 1

2 but
not for γ = 0 (see, e.g., [22, p 552]). The occurrence of a zero eigenvalue or resonance is an exceptional event: for
Hamiltonians H(c) = H0 + cV the set of parameters c ∈ R, for which zero is an eigenvalue or a resonance, is discrete
(see, e.g., [14, p 589]).
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(ii) v∞(q0) := limt→∞ Q(q0,t)

t
exists for P

�0 -almost all q0 ∈ R
3 and it is randomly distributed

with the density
∣∣�̂out

0 (·)∣∣2
, i.e. for every measurable set A ⊂ R

3

P
�0(v∞ ∈ A) =

∫
A

∣∣�̂out
0 (k)

∣∣2
d3k. (7)

(iii) For P
�0 -almost all Bohmian trajectories the asymptotic velocity is given by v∞, i.e. for

all ε > 0 there exists some T > 0 and some C < ∞ such that

P
�0({q0 ∈ R

3 | |v� (Q(q0, t), t) − v∞(q0)| < Ct−
1
2 ∀t � T }) > 1 − ε. (8)

In the proof we shall use ideas of Shucker [17], who, for V ≡ 0, proved results equivalent to
part (ii) for Nelson’s stochastic mechanics.

Remark 2. The condition V ∈ (V )4 is technically related to the expansion in generalized
eigenfunctions in [20, 12].

Up to now our results are formulated in terms of the velocity: the asymptotic velocities of
P

�0 -almost all trajectories are those of straight paths. As an easy corollary to theorem 1,
we obtain a statement about the trajectories themselves: P

�0 -almost every trajectory Q(q0, t)

becomes straight in the sense that from some large time on it stays close to some straight path
for arbitrary long time.

Corollary 1. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance of H. Let �0 ∈ C. Then P

�0 -almost all Bohmian trajectories become straight lines
asymptotically, i.e. for all ε > 0, δ > 0 and �T > 0 there exists some T > 0 such that

P
�0({q0 ∈ R

3 | sup
T ′�T

sup
t∈[T ′,T ′+�T ]

|Q(q0, t) − g(q0, T
′, t)| < δ}) > 1 − ε. (9)

Here g(q0, T
′, t) := Q(q0, T

′)+v∞(q0)(t −T ′) is the straight path a particle with the uniform
velocity v∞(q0) := limt→∞ Q(q0,t)

t
would follow.

Remark 3. One might be inclined to prove something stronger, namely that P
�0 -almost

every trajectory Q(q0, t) becomes straight in the sense that from some large time on it stays
close to some straight path for all time:

For P
�0 -almost all q0 ∈ R

3 there exists some straight path g∞(q0, t) = g∞(q0, 0) +
v∞(q0)t such that

lim
t→∞ |Q(q0, t) − g∞(q0, t)| = 0. (10)

However, to get this stronger statement the error in (8) would have to fall of faster than t−1.
But this cannot be achieved generically. In the introduction (equations (4) and (5)), we already
saw that even the velocity field made by the long time asymptote ϕ1 of the pure scattering
wavefunction �t = �ac

t is given by

vϕ1(Q, t) = Q

t
+

1

t
∇kS(k)

∣∣∣∣
k= Q

t

,

that is even then the error is generically of order t−1 only.
Thus (10) can be true for general wavefunctions only if the real velocity v� converges to

the asymptotic velocity v∞ in such a way that v� − v∞ still goes to zero when integrated over
in time. Up to now we have however no means to prove anything like that.
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In the second part of the paper, we consider more general wavefunctions than pure scattering
wavefunctions. Besides the scattering part �ac

0 ∈ C ⊂ Hac(H) we will allow the wavefunction
�0 to have a bound part �

pp

0 ∈ Dα ⊂ Hpp(H), where Dα is defined as follows.

Definition 3. Let α > 0. f : R
3 → C is in Dα if

f ∈ Hpp(H) ∩ C∞(H)

and there exist R > 0 and C < ∞ such that

sup
t∈R

|e−iHtf (q)| � C|q|− 3
2 −α and sup

t∈R

|∇ e−iHtf (q)| � C|q|− 3
2 −α

for all |q| > R.

Remark 4. �
pp

0 ∈ Dα (α > 0) seems to be a reasonable assumption. Indeed there is a huge
amount of the literature on the exponential decay of eigenfunctions of Schrödinger operators,
although results for the gradient of eigenfunctions are rather rare (see [18, 19] for an overview).
We wish to recall here two results on eigenfunctions u ∈ L2(R3), i.e. solutions of Hu = Eu

with H as above and E < 0.7

(i) There exist R > 0 and C < ∞ such that

sup
t∈R

|e−iHtu(q)| = sup
t∈R

|e−iEtu(q)| = |u(q)| � C|q|−1 e−|E| 1
2 |q|

for all |q| � R (see, e.g., [1]).
(ii) If in addition to the above V ∈ K

(1)
3 (where we use the notation of [18, p 467]), i.e. if the

singularities of V are not too bad, u ∈ C1(�) and for every q0 ∈ �

sup
{q∈�||q0−q|�1}

|∇u(q)| � C

∫
|q0−q|�2

|u(q)| dq

for some (possibly E-dependent) positive constant C (q.v. [18]: theorems C.2.4 and C.2.5).

Using (i), we particularly get supt∈R |∇ e−iHtu(q)| = O
(|q| e−|E| 1

2 |q|) for |q| → ∞.

For �0 = �ac
0 + �

pp

0 with �ac
0 ∈ C and �

pp

0 ∈ Dα (for any α > 0) we show that the limit
v∞(q0) := limt→∞ Q(q0,t)

t
still exists for P

�0 -almost all trajectories Q(q0, t). As described in
the introduction we obtain that P

�0 -almost all trajectories are either such that their long-time
behaviour is governed solely by the scattering part �ac

0 of the wavefunction, i.e. they are
scattering trajectories, or such that their long-time behaviour is governed solely by the bound
part �

pp

0 of the wavefunction, i.e. they are bound trajectories. Moreover we obtain that the
asymptotic velocity of a scattering trajectory is equal to v∞, i.e. it is equal to that of a straight
path. Finally the probability distribution of v∞ has the density

∣∣�̂out
0 (·)∣∣2

+
∥∥�

pp

0

∥∥2
δ3(·), that

is v∞ has the same probability distribution as in the case of a pure scattering wavefunction—
except at v∞ = 0 where the mass

∥∥�
pp

0

∥∥2
of the bound trajectories is located. These assertions

are collected in

Theorem 2. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance of H. Let �0 = �ac

0 + �
pp

0 with �ac
0 ∈ C and �

pp

0 ∈ Dα (for some α > 0). Then

(i) the Bohmian trajectories Q(q0, t) exist globally in time for P
�0 -almost all initial

configurations q0 ∈ R
3.

7 Clearly for V ∈ (V )4 there are no positive eigenvalues (see, e.g., [13]).
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(ii) v∞(q0) := limt→∞ Q(q0,t)

t
exists for P

�0 -almost all q0 ∈ R
3 and its probability distribution

has the density
∣∣�̂out

0 (·)∣∣2
+
∥∥�

pp

0

∥∥2
δ3(·), i.e. for every measurable set A ⊂ R

3

P
�0(v∞ ∈ A) =

{∫
A

∣∣�̂out
0 (k)

∣∣2
d3k +

∥∥�
pp

0

∥∥2
if 0 ∈ A,∫

A

∣∣�̂out
0 (k)

∣∣2
d3k if 0 �∈ A.

(11)

(iii) P
�0 -almost all Bohmian trajectories are either bound trajectories or scattering

trajectories and for scattering trajectories the asymptotic velocity is given by v∞, i.e.
for all ε > 0 and all 0 < γ < 2α there exist R > 0, T > 0 and C < ∞ such that∣∣∣∣∣P�0

({
q0 ∈ R

3 | |Q(q0, t)| � R

(
t

T

) 1
1+γ

∀t � T

})
− ∥∥�

pp

0

∥∥2

∣∣∣∣∣ < ε (12)

and for β := min
{
α, 1

2

}∣∣∣∣P�0

({
q0 ∈ R

3 | |Q(q0, t)| > R
t

T
∧ |v� (Q(q0, t), t)

− v∞(q)| < Ct−β ∀ t � T

})
− ∥∥�ac

0

∥∥2
∣∣∣∣ < ε. (13)

We rewrite our results in terms of the trajectories.

Corollary 2. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor
a resonance of H. Let �0 = �ac

0 + �
pp

0 with �ac
0 ∈ C and �

pp

0 ∈ Dα (for some α > 0). Let
g(q0, T

′, t) := Q(q0, T
′) + v∞(q0)(t − T ′) be the straight path of a particle with the uniform

velocity v∞(q0) := limt→∞ Q(q0,t)

t
. Then for all ε > 0, δ > 0 and �T > 0 there exists some

T > 0 such that∣∣P�0({q0 ∈ R
3 | sup

T ′�T

sup
t∈[T ′,T ′+�T ]

|Q(q0, t) − g(q0, T
′, t)| < δ}) − ∥∥�ac

0

∥∥2∣∣ < ε. (14)

4. Proof

4.1. Three preparatory lemmata

Since the proof will mostly use properties of the Fourier transform �̂out
0 of the outgoing

asymptote rather than properties of the scattering (part of the) wavefunction �ac
t we give the

following mapping lemma.

Lemma 1. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance of H. Define Ĉ as follows:

Let g : R
3\{0} → C. We say g ∈ Ĉ if there is some C < ∞ such that

2|g(k)| � C〈k〉−5,∣∣∂η

k g(k)
∣∣ � C, |η| = 1,∣∣κ∂

η

k g(k)
∣∣ � C〈k〉−1, |η| = 2,∣∣∣∣ ∂

∂|k|g(k)

∣∣∣∣ � C〈k〉−5,∣∣∣∣ ∂2

∂|k|2 g(k)

∣∣∣∣ � C〈k〉−2,

where 〈k〉 := (1 + k2)
1
2 , κ = |k|

〈k〉 and η is a multi-index.
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Then

�0 ∈ C ⇒ �̂out
0 ∈ Ĉ.

The proof of lemma 1 is analogue to that of lemma 3 in [12].
For the proof of both theorems 1 and 2 we need (pointwise) estimates on how fast the

scattering (part of the) wavefunction tends to the local plane wave ϕ1 = (it)−
3
2 exp

(
i q2

2t

)
�̂out

0

(
q

t

)
described in the introduction. Since we are mainly interested in the velocity field v� = Im

(∇�
�

)
we also need estimates on the gradient.

Lemma 2. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance of H. Let �0 ∈ C. From �t we split off its (freely evolving) outgoing asymptote
�out

t = e−iH0t�out
0 ,

�t(q) =: �out
t (q) + ϕ3(q, t). (15)

Then �t tends to �out
t in the sense that there is some R > 0 such that for all T > 0 there exists

some CT < ∞ such that

|ϕ3(q, t)| � CT

|q|(t + |q|) ∀|q| > 0, (16a)

|∇ϕ3(q, t)| � CT

|q|(t + |q|) ∀|q| > R (16b)

for all t � T .

The proof can be found in [20]. We give more detailed information in the appendix.

Lemma 3. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance of H. Let �0 ∈ C. From the (freely evolving) outgoing asymptote �out

t = e−iH0t�out
0

of �t we split off the local plane wave ϕ1,

�out
t (q) = (it)−

3
2 e

iq2

2t �̂out
0

(q

t

)
+ (2π it)−

3
2 e

iq2

2t

∫
R

3
e−i q·y

t

(
e

iq2

2t − 1
)
�out

0 (y) d3y

= (it)−
3
2 e

iq2

2t �̂out
0

(q

t

)
+ (2π)−

3
2

∫
R

3
ei(k·q− k2 t

2 )
(
�̂out

0 (k) − �̂out
0

(q

t

))
d3k

=: ϕ1(q, t) + ϕ2(q, t). (17)

Then there is some C < ∞ such that

|ϕ2(q, t)| � Ct−2, (18a)∣∣∣∣∇ϕ2(q, t) + (it)−
3
2 e

iq2

2t ∇�̂out
0

(q

t

)∣∣∣∣ =
∣∣∣∇�out

t (q) − i
q

t
ϕ1(q, t)

∣∣∣ � Ct−2 (18b)

for all q ∈ R
3 and t �= 0.

Furthermore,

lim
t→∞ ‖�t − ϕ1(·, t)‖ = 0. (19)

The proof of the pointwise estimates (18a) and (18b) can be found in [12]. Also (19) is a
standard result. We give more detailed information in the appendix.

Remark 5. The estimates (16a) and (16b) resp. (18a) and (18b) were derived by Teufel, Dürr
and Münch-Berndl [20] resp. Dürr, Moser and Pickl [12] using generalized eigenfunctions.
It is the properties of the eigenfunctions, which concerning smoothness and boundedness are
rather poor in general, that dictate the form of Ĉ and thus also (through lemma 1) the overall
form of our conditions on the scattering (part of the) wavefunction, i.e. of C. For a discussion
of how this comes about see [12].
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4.2. Proof of theorem 1 and corollary 1

Proof of theorem 1. (i) is a direct consequence of corollary 3.2 in [4] resp. corollary 4
in [21].

For technical reasons we continue with the proof of (iii). For δ1 > 0, δ2 > 0 and
b > a > 0 we define the sets

Bδ1ab := {
k ∈ R

3
∣∣ ∣∣�̂out

0 (k)
∣∣ > δ1 ∧ a < |k| < b

}
(20)

and inner subsets thereof

Bδ1δ2ab := {
k ∈ R

3
∣∣ Uδ2(k) ⊂ Bδ1ab

}
(21)

where Uδ2(k0) = {k ∈ R
3 | |k − k0| < δ2} is the open ball around k0 with radius δ2. We show

that for all δ1 > 0, δ2 > 0 and b > a > 0 there exists some T > 0 and some suitable C < ∞
(depending on δ1, a and b) such that

Q(q, T )

T
∈ Bδ1δ2ab ⇒

∣∣∣∣v� (Q(q, t), t) − Q(q, t)

t

∣∣∣∣ <
C

3
t−

1
2 ∀t � T . (22)

For this we first show that there is some C̃ < ∞ such that∣∣∣v� (q, t) − q

t

∣∣∣ � C̃t−2

|�t(q)|
(

1 +
|q|
t

)(
1 +

t

|q|
)

(23)

for t and |q| big enough and such that �t(q) �= 0. By (2) we have for q ∈ R
3 and t ∈ R such

that �t(q) �= 0∣∣∣v� (q, t) − q

t

∣∣∣ =
∣∣∣∣Im (∇�t(q)

�t(q)
− i

q

t

)∣∣∣∣ � |�t(q)|−1
∣∣∣∇�t(q) − i

q

t
�t(q)

∣∣∣ .
To estimate

∣∣∇�t(q) − i q

t
�t (q)

∣∣ for t and |q| big enough we use lemmas 2 and 3 and get for
some suitable C̃ < ∞∣∣∣∣∇�t(q) − i

q

t
�t(q)

∣∣∣∣ �
∣∣∣∇�t(q) − i

q

t
ϕ1(q, t)

∣∣∣ +
|q|
t

|�t(q) − ϕ1(q, t)|

�
∣∣∣∇�out

t (q)− i
q

t
ϕ1(q, t)

∣∣∣ + |∇ϕ3(q, t)| +
|q|
t

(∣∣�out
t (q)− ϕ1(q, t)

∣∣ + |ϕ3(q, t)|)
� C̃

(
t−2 +

1

|q|(t + |q|)
)(

1 +
|q|
t

)
� C̃t−2

(
1 +

t

|q|
)(

1 +
|q|
t

)
.

From this (23) follows.
Now let δ1 > 0, δ2 > 0 and b > a > 0. To get (22) we shall show that for T big enough

Q(q, T )

T
∈ Bδ1δ2ab implies

Q(q, t)

t
∈ Uδ2

(
Q(q, T )

T

)
⊂ Bδ1ab ∀t � T

(24)

and that there is some C < ∞ (depending on δ1, a and b) such that for all t � T

q

t
∈ Bδ1ab implies

∣∣∣v� (q, t) − q

t

∣∣∣ <
C

3
t−

1
2 . (25)

We start with (25). Let q

t
∈ Bδ1ab. Then by lemmas 2 and 3

t
3
2 |�t(q)| � t

3
2 [|ϕ1(q, t)| − |ϕ2(q, t)| − |ϕ3(q, t)|]

>

∣∣∣�̂out
0

(q

t

)∣∣∣ − C ′
(

t−
1
2 + t

3
2

1

|q|(t + |q|)
)

�
∣∣∣�̂out

0

(q

t

)∣∣∣ − C ′t−
1
2

(
1 +

t

|q|
)
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for some suitable C ′ < ∞ and t big enough. In the last step we used

1

|q|(t + |q|) � 1

|q|t = t−2 t

|q| .

Since by (20)
∣∣�̂out

0

(
q

t

)∣∣ > δ1 and t
|q| < a, for t big enough we can choose C ′t−

1
2
(
1 + t

|q|
)

� δ1
2

and obtain

t
3
2 |�t(q)| � δ1

2
.

Using this, |q|
t

< b and again t
|q| < a we get by (23)∣∣∣v� (q, t) − q

t

∣∣∣ � C

3
t−

1
2

for some (δ1, a and b dependent) C < ∞ and for t big enough.
Now let Q(q,T )

T
∈ Bδ1δ2ab. Suppose that there exists some t1 > T such that Q(q,t1)

t1
�∈

Uδ2

(Q(q,T )

T

)
. Since Q(q, t) is continuous in t (it is a solution of the first-order ODE (2) that

exists globally in time) this implies that the first exit time

tex(q) := max

{
s > T

∣∣∣∣ Q(q, s)

s
�∈ Uδ2

(
Q(q, T )

T

)
∧

Q(q, τ )

τ
∈ Uδ2

(
Q(q, T )

T

)
∀T � τ < s

}
exists and that

∣∣Q(q,tex(q))

tex(q)
− Q(q,T )

T

∣∣ = δ2. However, Q(q,τ )

τ
∈ Uδ2

(Q(q,T )

T

) ⊂ Bδ1ab for all
T � τ < tex(q), i.e. by (25) we have for T big enough∣∣∣∣Q(q, tex(q))

tex(q)
− Q(q, T )

T

∣∣∣∣ =
∫ tex(q)

T

∣∣∣∣ ∂

∂τ

Q(q, τ )

τ

∣∣∣∣ dτ

�
∫ tex(q)

T

1

τ

∣∣∣∣v� (Q(q, τ ), τ ) − Q(q, τ )

τ

∣∣∣∣ dτ

<

∫ ∞

T

C

3τ
τ− 1

2 dτ = 2

3
CT − 1

2 < δ2. (26)

Since this is a contradiction (24) holds. Using (25) (with q replaced by Q(q, t)) we obtain

Q(q, T )

T
∈ Bδ1δ2ab ⇒ Q(q, t)

t
∈ Bδ1ab ∀t � T

⇒
∣∣∣∣v� (Q(q, t), t) − Q(q, t)

t

∣∣∣∣ <
C

3
t−

1
2 ∀t � T ,

that is we obtain (22).
Next we show that there is a measurable set G of ‘good’ initial configurations q for which

the velocity v� (Q(q, t), t) is well behaved:

v∞(q) := lim
t→∞

Q(q, t)

t
exists

and (27)

|v� (Q(q, t), t) − v∞(q)| � Ct−
1
2 ∀t � T .

Indeed, with the help of (22) we can rewrite (26) to get

Q(q, T )

T
∈ Bδ1δ2ab ⇒

∣∣∣∣Q(q, t1)

t1
− Q(q, t2)

t2

∣∣∣∣ <
2

3
Ct

− 1
2

1 ∀t2 � t1 � T .
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Thus
(Q(q,t)

t

)
is a Cauchy sequence and v∞(q) := limt→∞ Q(q,t)

t
exists whenever Q(q,T )

T
∈

Bδ1δ2ab for some δ1 > 0, δ2 > 0, b > a > 0 and for T big enough. Then also (again using
(22))

|v� (Q(q, t), t) − v∞(q)| �
∣∣∣∣v� (Q(q, t), t) − Q(q, t)

t

∣∣∣∣ + lim
s→∞

∣∣∣∣Q(q, t)

t
− Q(q, s)

s

∣∣∣∣ < Ct−
1
2

for all t � T . Thus we have shown that (27) holds for q ∈ G with

G :=
{
q ∈ R

3

∣∣∣∣ Q(q, T )

T
∈ Bδ1δ2ab

}
,

where T > 0 was big enough and δ1 > 0, δ2 > 0 and b > a > 0 were still arbitrary.
Next we show that we can adjust δ1, δ2, b, a and T in such a way that the set G of ‘good’

initial configurations has (nearly) full measure. Note that this especially implies almost sure
existence of v∞.

Let ε > 0. We show that for δ1, δ2 and a small and b and T big enough

1 − P
�0(G) = P

�0

({
q0 ∈ R

3

∣∣∣∣Q(q0, T )

T
�∈ Bδ1δ2ab

})
< ε. (28)

Since by (27)

G ⊂ {
q ∈ R

3
∣∣ ∣∣v� (Q(q, t), t) − v∞(q)

∣∣ < Ct−
1
2 ∀t � T

}
this then gives us (8)

P
�0

({
q0 ∈ R

3
∣∣ ∣∣v� (Q(q0, t), t) − v∞(q0)

∣∣ < Ct−
1
2 ∀t � T

})
� P

�0(G) > 1 − ε.

Back to the proof of (28). Using equivariance (6) and

Bc
δ1δ2ab = Bc

δ1ab + {k ∈ R
3 | k ∈ Bδ1ab ∧ Uδ2(k) �⊂ Bδ1ab}

we get (for simplicity we write q instead of q0)

P
�0

({
q ∈ R

3

∣∣∣∣ Q(q, T )

T
�∈ Bδ1δ2ab

})
= P

�T

({
q ∈ R

3

∣∣∣∣ q

T
�∈ Bδ1δ2ab

})
� P

�T

({
q ∈ R

3

∣∣∣∣ q

T
�∈ Bδ1ab

})
+ P

�T

({
q ∈ R

3

∣∣∣∣ q

T
∈ Bδ1ab ∧ Uδ2

( q

T

)
�⊂ Bδ1ab

})
. (29)

To estimate the second term in the last line we use that �̂out
0 (k) is continuous (outside k = 0)

by lemma 1. Then Bδ1ab is open (recall (20)) and thus{
q ∈ R

3
∣∣∣ q

T
∈ Bδ1ab ∧ Uδ2

( q

T

)
�⊂ Bδ1ab

}
→ ∅

as δ2 → 0. Therefore

lim
δ2→0

P
�T

({
q ∈ R

3
∣∣∣ q

T
∈ Bδ1ab ∧ Uδ2

( q

T

)
�⊂ Bδ1ab

})
= 0,

that is the second term can be made smaller than ε
2 for δ2 small enough and we are left with

the task to provide an estimate for the first term in the last line of (29). For convenience define

Cδ1ab(T ) :=
{
q ∈ R

3
∣∣∣ q

T
�∈ Bδ1ab

}
.

Then

P
�T

({
q ∈ R

3
∣∣∣ q

T
�∈ Bδ1ab

})
= ∥∥χCδ1ab(T )�T

∥∥2 �
(∥∥χCδ1ab(T )ϕ1(·, T )

∥∥ + ‖�T − ϕ1(·, T )‖)2
.
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By (19) the second term can be made arbitrary small for T big enough. For the first term,
we substitute k := q

T
and get (with ϕ1(q, t) = (it)−

3
2 exp

(
i q2

2t

)
�̂out

0

(
q

t

)
the local plane wave

defined in lemma 3)∥∥χCδ1ab(T )ϕ1(·, T )
∥∥2 =

∫
Cδ1ab(T )

T −3
∣∣∣�̂out

0

( q

T

)∣∣∣2
d3q =

∫
Bc

δ1ab

∣∣�̂out
0 (k)

∣∣2
d3k

=
∫

|�̂out
0 (k)|�δ1

∣∣�̂out
0 (k)

∣∣2
d3k +

∫
|k|�a

∣∣�̂out
0 (k)

∣∣2
d3k +

∫
|k|�b

∣∣�̂out
0 (k)

∣∣2
d3k

�
∫

|�̂out
0 (k)|�δ1∧|k|<b

∣∣�̂out
0 (k)

∣∣2
d3k +

∫
|k|�a

∣∣�̂out
0 (k)

∣∣2
d3k + 2

∫
|k|�b

∣∣�̂out
0 (k)

∣∣2
d3k

� 4

3
πb3δ1

2 +
4

3
πa3 sup

k∈R
3\{0}

∣∣�̂out
0 (k)

∣∣2
+ 2

∫
|k|�b

∣∣�̂out
0 (k)

∣∣2
d3k.

Since �̂out
0 is square integrable the third term can be made arbitrary small for b big enough.

Then the first term can be diminished at will by decreasing δ1 accordingly. By lemma 1
supk∈R

3\{0}
∣∣�̂out

0 (k)
∣∣ is bounded, so the second term can be made arbitrary small for a small

enough. Thus we have shown (28).
Finally we prove (ii). Since we have already shown that v∞ exists for almost all initial

conditions q0 ∈ R
3 it is only left to show that v∞ is

∣∣�̂out
0

∣∣2
-distributed. Let A ⊂ R

3 be
measurable. By dominated convergence and equivariance (6)

P
�0(v∞ ∈ A) = lim

t→∞ P
�0

({
q ∈ R

3

∣∣∣∣ Q(q, t)

t
∈ A

})
= lim

t→∞ P
�t

({
q ∈ R

3

∣∣∣∣ q

t
∈ A

})
= lim

t→∞ ‖χq

t
∈A�t‖2.

By (19) this yields (again with k := q

t
)

P
�0 (v∞ ∈ A) = lim

t→∞
∥∥χq

t
∈Aϕ1(·, t)

∥∥2 = lim
t→∞

∫
q

t
∈A

t−3
∣∣∣�̂out

0

(q

t

)∣∣∣2
d3q =

∫
A

∣∣�̂out
0 (k)

∣∣2
d3k.

�

Proof of corollary 1. Let ε > 0, δ > 0 and �T > 0. By theorem 1 (iii), there exists some
T > 0 and some C < ∞ such that

P
�0

({
q0 ∈ R

3
∣∣ |v� (Q(q0, t), t) − v∞(q0)| < Ct−

1
2 ∀t � T

})
> 1 − ε.

But then also

P
�0

({
q0 ∈ R

3

∣∣∣∣ sup
t�T

|v� (Q(q0, t), t) − v∞(q0)| <
δ

�T

})
> 1 − ε

if T is big enough.
Now let q0 ∈ R

3 be such that supt�T |v� (Q(q0, t), t) − v∞(q0)| < δ
�T

and let T ′ � T .
Then

|Q(q0, t) − [Q(q0, T
′) + v∞(q0)(t − T ′)]| =

∣∣∣∣∫ t

T ′
(v� (Q(q0, τ ), τ ) − v∞(q0)) dτ

∣∣∣∣
<

δ

�T
(t − T ′) � δ

for all t ∈ [T ′, T ′ + �T ]. So we get (9). �
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4.3. Proof of theorem 2 and corollary 2

Let �0 = �ac
0 + �

pp

0 . We need that the support of the scattering part �ac
t and that of the

bound part �
pp
t gets separated for big times. As described in the introduction and shown in

subsection 4.1 (lemma 3, equation (19)), the support of �ac
t moves out to spatial infinity, so

we are done if we can show that the support of �
pp
t stays concentrated around the scattering

centre for all times, i.e. if we can show that for all ε > 0 there exists some R > 0 such that

sup
t∈R

∫
Bc

R

∣∣�pp
t (q)

∣∣2
d3q < ε. (30)

But that is a well-known feature of bound wavefunctions (see, e.g., [16] or [15] theorem 2.1
and example 2.2).

Proof of theorem 2. Again (i) is a direct consequence of corollary 3.2 in [4] resp.
Corollary 4 in [21].

We start with the proof of (iii). Let Bδ1ab and Bδ1δ2ab be the sets defined in the proof of
theorem 1 (equations (20) and (21) respectively) and let β = min

{
α, 1

2

}
. We show that for all

δ1 > 0, δ2 > 0 and b > a > 0 there exists some T > 0 such that

Q(q, T )

T
∈ Bδ1δ2ab ⇒ |Q(q, t)| > at ∧

∣∣∣∣v� (Q(q, t), t) − Q(q, t)

t

∣∣∣∣ <
C

3
t−β (31)

for all t � T and some suitable C < ∞ (depending on δ1, a and b).
Analogue to (23) in the proof of theorem 1 we start by showing∣∣∣v� (q, t) − q

t

∣∣∣ � C̃t−
3
2 −β

|�t(q)|
(

1 +
|q|
t

)[(
1 +

t

|q|
)

+

(
t

|q|
) 3

2 +α
]

(32)

for some suitable C̃ and for all t and |q| big enough such that �t(q) �= 0. By (2) we have for
q ∈ R

3 and t ∈ R such that �t(q) �= 0∣∣∣v� (q, t) − q

t

∣∣∣ =
∣∣∣∣Im (∇�t(q)

�t(q)
− i

q

t

)∣∣∣∣ � |�t(q)|−1
∣∣∣∇�t(q) − i

q

t
�t(q)

∣∣∣ .
Thus we need to estimate∣∣∣∇�t(q) − i

q

t
�t(q)

∣∣∣ �
∣∣∣∇�t(q) − i

q

t
ϕ1(q, t)

∣∣∣ +
|q|
t

|�t(q) − ϕ1(q, t)|

for big t and |q|. Here ϕ1 = (it)−
3
2 exp

(
i q2

2t

)
�̂out

0

(
q

t

)
is the local plane wave defined in lemma 3.

Since �
pp

0 ∈ Dα and β = min
{
α, 1

2

}
we have (using lemmas 2 and 3 in the same way as in the

proof of (23))

|�t(q) − ϕ1(q, t)| �
∣∣�ac

t (q) − ϕ1(q, t)
∣∣ +

∣∣�pp
t (q)

∣∣ � |ϕ2(q, t)| + |ϕ3(q, t)| +
∣∣�pp

t (q)
∣∣

� C ′
[
t−2 +

1

|q|(t + |q|) + |q|− 3
2 −α

]
� C ′

[
t−2 +

1

|q|t + |q|− 3
2 −α

]
� C ′t−

3
2 −β

[
t−

1
2 +β

(
1 +

t

|q|
)

+ t−α+β

(
t

|q|
) 3

2 +α
]

� C̃t−
3
2 −β

[(
1 +

t

|q|
)

+

(
t

|q|
) 3

2 +α
]



8436 S Römer et al

and∣∣∣∇�t(q) − i
q

t
ϕ1(q, t)

∣∣∣ �
∣∣∣∇�ac

t (q) − i
q

t
ϕ1(q, t)

∣∣∣ +
∣∣∇�pp

t (q)
∣∣

�
∣∣∣∇�out

t (q) − i
q

t
ϕ1(q, t)

∣∣∣ + |∇ϕ3(q, t)| +
∣∣∇�pp

t (q)
∣∣

� C ′
[
t−2 +

1

|q|(t + |q|) + |q|− 3
2 −α

]
� C̃t−

3
2 −β

[(
1 +

t

|q|
)

+

(
t

|q|
) 3

2 +α
]

for some suitable C̃ < ∞ and t and |q| big enough. So∣∣∣∇�t(q) − i
q

t
�t(q)

∣∣∣ � C̃t−
3
2 −β

(
1 +

|q|
t

)[(
1 +

t

|q|
)

+

(
t

|q|
) 3

2 +α
]

and we get (32).
Since Q(q,t)

t
∈ Bδ1ab directly implies |Q(q, t)| > at (31) follows from (32) in exactly the

same way as (22) followed from (23).
Next we show that there is a measurable set G of ‘good’ initial configurations q for which

the velocity v� (Q(q, t), t) is well behaved in the sense that asymptotically it is that of a
straight line:

v∞(q) := lim
t→∞

Q(q, t)

t
exists

and (33)

|Q(q, t)| > at ∧ |v� (Q(q, t), t) − v∞(q)| < Ct−β ∀t � T .

We use (31) in the same way we used (22) in the proof of (27) of theorem 1 to get that (33)
holds for q ∈ G with

G :=
{
q ∈ R

3

∣∣∣∣Q(q, T )

T
∈ Bδ1δ2ab

}
,

where T > 0 is big enough and δ1 > 0, δ2 > 0 and b > a > 0 are still arbitrary.
Next we show (13), that is we show that the set of initial configurations q0 for which (33)

holds has measure arbitrary close to
∥∥�ac

0

∥∥2
. For any δ1 > 0, δ2 > 0, b > a > 0 and for

T > 0 big enough we have (with R := aT )

P
�0

({
q0 ∈ R

3

∣∣∣∣ Q(q0, T )

T
> a

})
� P

�0

({
q0 ∈ R

3 | |Q(q0, t)| > R
t

T
∧

|v� (Q(q0, t), t) − v∞(q)| < Ct−β ∀t � T

})
� P

�0(G),

where the first inequality is trivial and the second follows from what we just said in (33). We
shall show that for any ε > 0 there are δ1 > 0, δ2 > 0 and a > 0 small and b > a and T > 0
big enough such that

P
�0 (G) >

∥∥�ac
0

∥∥2 − ε (34)

and

P
�0

({
q0 ∈ R

3

∣∣∣∣ Q(q0, T )

T
> a

})
<

∥∥�ac
0

∥∥2
+ ε. (35)

Thus∥∥�ac
0

∥∥2
+ ε > P

�0

({
q0 ∈ R

3

∣∣∣∣ Q(q0, t)| > R
t

T
∧ |v� (Q(q0, t), t)

− v∞(q)| < Ct−β ∀t � T

})
>

∥∥�ac
0

∥∥2 − ε,

that is we get (13).
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Let ε > 0. First we prove (34). By Schwarz inequality (again we write q instead of q0

for simplicity)

P
�0(Gc) = P

�0

({
q ∈ R

3

∣∣∣∣ qtp[T ] �∈ Bδ1δ2ab

})
= 〈

�ac
0 + �

pp

0

∣∣χ Q(q,T )

T
�∈Bδ1δ2ab

(
�ac

0 + �
pp

0

)〉
�

∥∥χ Q(q,T )

T
�∈Bδ1δ2ab

�ac
0

∥∥2
+
∥∥�

pp

0

∥∥2
+ 2

∥∥�
pp

0

∥∥∥∥χ Q(q,T )

T
�∈Bδ1δ2ab

�ac
0

∥∥.

Note, however, that (with �̃ac
0 := �ac

0
‖�ac

0 ‖ the normalized scattering part of the wavefunction)∥∥χ Q(q,T )

T
�∈Bδ1δ2ab

�ac
0

∥∥2 = ∥∥�ac
0

∥∥2
P

�̃ac
0

({
q ∈ R

3

∣∣∣∣ Q(q, T )

T
�∈ Bδ1δ2ab

})
and that we already showed ((28) in the proof of theorem 1) that this can be made arbitrary
small for δ1, δ2 and a small and b and T big enough. Thus

P
�0(Gc) = P

�0

({
q ∈ R

3

∣∣∣∣ Q(q, T )

T
�∈ Bδ1δ2ab

})
<

∥∥�
pp

0

∥∥2
+ ε.

Since
∥∥�

pp

0

∥∥2
+
∥∥�ac

0

∥∥2 = 1 this gives (34)

P
�0(G) = 1 − P

�0(Gc) >
∥∥�ac

0

∥∥2 − ε.

Next, to get (35), we note that by equivariance (6) and again Schwarz inequality we also
have

P
�0

({
q ∈ R

3

∣∣∣∣ Q(q, T )

T
> a

})
= P

�T

({
q ∈ R

3

∣∣∣∣ q

T
> a

})
�

∥∥χ|q|>aT �
pp

T

∥∥2

+
∥∥�ac

0

∥∥2
+ 2

∥∥�ac
0

∥∥ ∥∥χ|q|>aT �
pp

T

∥∥ .

By (30)
∥∥χ|q|>aT �

pp

T

∥∥ can be made arbitrary small for T big enough and we obtain (35).
We proceed to prove (12), that is we show that the set of trajectories moving out to spatial

infinity like t
1

1+γ has measure arbitrary close to
∥∥�

pp

0

∥∥2
. For this we show that for a small and

T big enough ∣∣P�0
({

q0 ∈ R
3
∣∣∣∣Q(q0, T )| � aT

}) − ∥∥�
pp

0

∥∥2∣∣ <
ε

2
(36)

and that for any 0 < γ < 2α there is some a > 0 small and some T > 0 big enough such that

P
�0

({
q0 ∈ R

3

∣∣∣∣|Q(q0, T )| � aT ∧ ∃t > T : |Q(q0, t)| > aT

(
t

T

) 1
1+γ

})
<

ε

2
. (37)

Then

P
�0

({
q0 ∈ R

3

∣∣∣∣|Q(q0, t)| � aT

(
t

T

) 1
1+γ

∀t � T

})
� P

�0({q0 ∈ R
3 | |Q(q0, T )| � aT }) <

∥∥�
pp

0

∥∥2
+

ε

2
and

P
�0

({
q0 ∈ R

3

∣∣∣∣ ∃ t � T : |Q(q0, t)| > aT

(
t

T

) 1
1+γ

})
� P

�0({q0 ∈ R
3 | |Q(q0, T )| > aT })

+ P
�0

({
q0 ∈ R

3

∣∣∣∣ |Q(q0, T )| � aT ∧ ∃ t > T : |Q(q0, t)| > aT

(
t

T

) 1
1+γ

})
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= 1 − P
�0({q0 ∈ R

3 | |Q(q0, T )| � aT })

+ P
�0

({
q0 ∈ R

3

∣∣∣∣ |Q(q0, T )| � aT ∧ ∃ t > T : |Q(q0, t)| > aT

(
t

T

) 1
1+γ

})
< 1 − (∥∥�

pp

0

∥∥2 − ε
)
.

Taken together this gives (12) (again with R := aT )

∥∥�
pp

0

∥∥2 − ε < 1 − P
�0

({
q0 ∈ R

3

∣∣∣∣ ∃ t � T : |Q(q0, t)| > aT

(
t

T

) 1
1+γ

})

= P
�0

({
q0 ∈ R

3

∣∣∣∣ |Q(q0, t)| � aT

(
t

T

) 1
1+γ

∀t � T

})
<

∥∥�
pp

0

∥∥2
+ ε. (38)

So to prove (12) it is left to show (36) and (37).
We start with (36). Note that for a small and T big enough (35) already gives us

P
�0({q0 ∈ R

3 | |Q(q0, T )| � aT }) = 1 − P
�0({q0 ∈ R

3 | |Q(q0, T )| > aT })
> 1 − ∥∥�ac

0

∥∥2 − ε

2
= ∥∥�

pp

0

∥∥2 − ε

2
.

Similarly,

P
�0({q0 ∈ R

3 | |Q(q0, T )| � aT }) <
∥∥�

pp

0

∥∥2
+

ε

2

for a small and T big enough follows directly from (34) and the fact that

{q ∈ R
3 | |Q(q, T )| � aT } ⊂

{
q ∈ R

3

∣∣∣∣ Q(q, T )

T
�∈ Bδ1δ2ab

}
= Gc

for all δ1 > 0, δ2 > 0 and b > a. Taken together this yields (36)∥∥�
pp

0

∥∥2
+

ε

2
> P

�0({q0 ∈ R
3 | |Q(q0, T )| � aT }) >

∥∥�
pp

0

∥∥2 − ε

2
.

Next we show (37). Let 0 < γ < 2α. For convenience we define

Aγ (a, T ) :=
{

q ∈ R
3 | |Q(q, T )| � aT ∧ ∃ t � T : |Q(q, t)| > aT

(
t

T

) 1
1+γ

}
.

Since Q(q, t) (as a solution of the first-order ODE (2)) is continuous in t q∈Aγ (a, T ) implies

that Q(q, t) crosses the moving sphere SRa,T (t) (with Ra,T (t) := (aT )( t
T
)

1
1+γ ) at least once and

outwards in [T ,∞). Therefore P
�0(Aγ (a, T )) is bounded from above by the probability

that some trajectory crosses SRa,T (t) in any direction in [T ,∞). In subsection 2.3.2 of
[5] Berndl invoked the probabilistic meaning of the quantum probability current density
J� = (j�, |�t |2) := (Im (�∗

t ∇�t), |�t |2) to prove that the expected number of crossings
of a smooth surface � in configuration-space-time by the random configuration-space-time
trajectory (Q(·, t), t) is given by the flux across this surface,∫

�

|J�(q, t) · U | dσ,

where U denotes the local unit normal vector at (q, t).8 (See also the argument given in
[4, p 11].) Since any trajectory (Q(q, t), t) will cross � an integral number of times (including

8 This also includes tangential ‘crossings’ in which the trajectory remains on the same side of �.
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0 and ∞) this expected value gives us an upper bound for the probability that (Q(q, t), t)

crosses �. In our case, we obtain

P
�0(Aγ (a, T )) �

∫
�

|J�(q, t) · U | dσ =: Pγ (a, T )

where

� = {(Ra,T (t) cos ϕ sin θ, Ra,T (t) sin ϕ sin θ, Ra,T (t) cos θ, t) | (ϕ, θ, t)

∈ [0, 2π) × [0, π) × [T ,∞)}.
Then

U = 1√
1 + ∂tRa,T (t)

(̂er , ∂tRa,T (t)) and dσ =
√

1 + ∂tRa,T (t)Ra,T (t)2 d� dt

where

êr = (cos ϕ sin θ, sin ϕ sin θ, cos θ)

is the usual unit normal vector of a three-dimensional sphere and d� = sin θ dϕ dθ . We obtain

Pγ (a, T ) =
∫ ∞

T

dt

∫
SRa,T (t)

|j�(q, t) · êr − |�t(q)|2∂tRa,T (t)|Ra,T (t)2 d�.

To control Pγ (a, T ) we need some estimates on J� .

Lemma 4. Let H = H0 + V with V ∈ (V )4 and let zero be neither an eigenvalue nor a
resonance of H. Let �0 = �ac

0 + �
pp

0 with �ac
0 ∈ C and �

pp

0 ∈ Dα (for some α > 0). Split the
the quantum probability current density J� according to the splitting of the wavefunction:

J�(q, t) = (j�(q, t), |�t(q)|2) := (Im (�t (q)∗∇�t(q)), |�t(q)|2)
= (

j�pp
(q, t),

∣∣�pp
t (q)

∣∣2)
+
(
j�ac

(q, t),
∣∣�ac

t (q)
∣∣2)

+ (jm(q, t), M(q, t))

with

j�ac/pp
(q, t) := Im

(
�

ac/pp
t (q)∗∇�

ac/pp
t (q)

)
,

jm(q, t) := Im
(
�pp

t (q)∗∇�ac
t (q) + �ac

t (q)∗∇�pp
t (q)

)
and

M(q, t) := 2Re
(
�pp

t (q)∗�ac
t (q)

)
.

Then there is some R > 0 such that for all T > 0 there exists some C < ∞ such that

sup
t∈R

∣∣j�pp
(q, t)

∣∣ � C|q|−3−2α, sup
t∈R

∣∣�pp
t (q)

∣∣2 � C|q|−3−2α (39)

for all |q| > R and

∣∣j�ac
(q, t)

∣∣ � C
(
t−3 + t−

3
2 |q|−2

)
,

∣∣�ac
t (q)

∣∣2 � C
(
t−3 + t−

3
2 |q|−2

)
, (40)

|jm(q, t)| � C|q|− 3
2 −α

(
t−

3
2 + t−1|q|−1

)
, M(q, t) � C|q|− 3

2 −α
(
t−

3
2 + t−1|q|−1

)
(41)

for all |q| > R and t � T .

The proof of lemma 4 can be found in the appendix.
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With the help of lemma 4 we shall show that Pγ (a, T ) < ε
2 for a small and T big enough.

We split Pγ (a, T ) according to the splitting of J� in lemma 4,

Pγ (a, T ) = Ppp
γ (a, T ) + Pac

γ (a, T ) + Pm
γ (a, T )

with

Pac/pp
γ (a, T ) =

∫ ∞

T

dt

∫
SRa,T (t)

∣∣j�ac/pp
(q, t) · êr − |�ac/pp(q)|2∂tRa,T (t)

∣∣Ra,T (t)2 d�

and

Pm
γ (a, T ) =

∫ ∞

T

dt

∫
SRa,T (t)

|jm(q, t) · êr − M(q, t)∂tRa,T (t)|Ra,T (t)2 d�,

and show that for a small and T big enough

Ppp
γ (a, T ) � Ca

1 T −2α, Pac
γ (a, T ) � C̃a2 + Ca

2 T − 1
2 and Pm

γ (a, T ) � Ca
3 T −α

for some C̃ < ∞ and some (a-dependent) Ca
i < ∞ (i = 1, 2, 3). By (39) there is some

C < ∞ such that

Ppp
γ (a, T ) �

∫ ∞

T

dt

∫
SRa,T (t)

[∣∣j�pp
(q, t)

∣∣ +
∣∣�pp

t (q)
∣∣2 1

1 + γ

Ra,T (t)

t

]
Ra,T (t)2 d�

� 4πC

∫ ∞

T

[
Ra,T (t)−1−2α +

Ra,T (t)−2αt−1

1 + γ

]
dt

= 4πC

[
1 + γ

2α − γ
a−1−2α +

a−2α

2α

]
T −2α = Ca

1 T −2α.

In exactly the same way, we get the desired bounds on Pac
γ (a, T ) and Pm

γ (a, T ) since, for T and
|q| = Ra,T (t) � Ra,T (T ) big enough, i.e. for T big enough, (40) resp. (41) implies

Pac
γ (a, T ) � 4πC

∫ ∞

T

[
Ra,T (t)2t−3 + t−

3
2 +

1

1 + γ

(
Ra,T (t)3t−4 + Ra,T (t)t−

5
2
)]

dt

� C̃a2 + Ca
2 T − 1

2

resp.

Pm
γ (a, T ) � 4πC

∫ ∞

T

[
Ra,T (t)

1
2 −αt−

3
2 + Ra,T (t)−

1
2 −αt−1 +

1

1 + γ

(
Ra,T (t)

3
2 −αt−

5
2

+ Ra,T (t)
1
2 −αt−2

)]
dt � Ca

3 T −α.

Thus we have proved (37) and can proceed to show (ii).
It is now easy to prove that v∞(q0) exists for P

�0 -almost all q0 ∈ R
3. Note that

|Q(q, t)| � aT
(

t
T

) 1
1+γ for all t � T implies v∞(q) := limt→∞ Q(q,t)

t
= 0. So by (33)

v∞(q0) exists for all initial configurations q0 in{
q0 ∈ R

3

∣∣∣∣ |Q(q0, t)| � aT

(
t

T

) 1
1+γ

∀t � T

}
∪

{
q0 ∈ R

3

∣∣∣∣ Q(q0, T )

T
∈ Bδ1δ2ab

}
.

Since the latter two sets are disjoint and have measure arbitrary close to
∥∥�

pp

0

∥∥2
(by (38)) and∥∥�ac

0

∥∥2
(by (34)) respectively we get almost sure existence of v∞.
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Finally it is left to show (11). Let A ⊂ R
3 be measurable. By dominated convergence,

equivariance (6) and (19) we get (for details see the proof of (7) of theorem 1)

P
�0(v∞ ∈ A) = lim

t→∞ P
�0

({
q ∈ R

3

∣∣∣∣Q(q, t)

t
∈ A

})
= lim

t→∞
[∥∥χq

t
∈Aϕ1(·, t)

∥∥2
+
∥∥χq

t
∈A�pp

t

∥∥2
+ 2 Re

〈
χq

t
∈Aϕ1(·, t)|�pp

t

〉]
. (42)

The first term yields∥∥χq

t
∈Aϕ1(·, t)

∥∥2 =
∫

A

∣∣�̂out
0 (k)

∣∣ d3k. (43)

The third term tends to zero as t → ∞: with |Re (z)| � |z| and Schwarz inequality we get for
every γ > 0∣∣Re

〈
χq

t
∈Aϕ1(·, t)

∣∣�pp
t

〉∣∣ �
∣∣Re

〈
χ

q

t
∈A∧|q|�t

1
1+γ

ϕ1(·, t)
∣∣�pp

t

〉
+ Re

〈
ϕ1(·, t)

∣∣χ
q

t
∈A∧|q|>t

1
1+γ

�pp
t

〉∣∣
�

∥∥χ
q

t
∈A∧|q|�t

1
1+γ

ϕ1(·, t)
∥∥∥∥�

pp

0

∥∥ + ‖ϕ1(·, t)‖
∥∥χ

q

t
∈A∧|q|>t

1
1+γ

�pp
t

∥∥.

By (43)

‖ϕ1(·, t)‖ = ∥∥�̂out
0

∥∥ = ∥∥�ac
0

∥∥
and ∥∥χ

q

t
∈A∧|q|�t

1
1+γ

ϕ1(·, t)
∥∥2 =

∫
|k|�t

−γ
1+γ

∣∣�̂out
0 (k)

∣∣ d3k.

This tends to zero as t → ∞ since by lemma 1 �̂out
0 (k) is bounded outside k = 0. Moreover,

lim
t→∞

∥∥χ
q

t
∈A∧|q|>t

1
1+γ

�pp
t

∥∥ = 0

by (30). Thus it is left to show that the second term in the last line of (42) yields

lim
t→∞

∥∥χq

t
∈A�pp

t

∥∥2 =
{

lim
t→∞

∥∥�
pp
t

∥∥2 = ∥∥�
pp

0

∥∥2
if 0 ∈ A,

0 if 0 �∈ A.
(44)

Again using (30) we get

lim
t→∞

∥∥χq

t
∈A�pp

t

∥∥2 = lim
t→∞

∥∥χ
q

t
∈A∧|q|�t

1
1+γ

�pp
t

∥∥2
.

Since |q| � t
1

1+γ implies limt→∞ |q|
t

= 0, we have

lim
t→∞ χ

q

t
∈A∧|q|�t

1
1+γ

(q) =
{

lim
t→∞ χ|q|�t

1
1+γ

(q) = 1 if 0 ∈ A

0 if 0 �∈ A,

for all q ∈ R
3. Moreover,∣∣χ

q

t
∈A∧|q|�t

1
1+γ

�pp
t (q)

∣∣2 �
∣∣�pp

t (q0)
∣∣2

,

so by dominated convergence we finally get (44).

Proof of corollary 2. The proof of corollary 2 is completely analogous to that of corollary 1.
�
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Appendix

Proof of lemma 2. The estimates in (16a) and (16b) were done by Teufel, Dürr and Berndl in
[20] (equations (15) and (16)). Their β is our ϕ3. Furthermore rather than �0 ∈ C they used
conditions on �̂out

0 included in �̂out
0 ∈ Ĉ to prove their equations (15) and (16). Because of

lemma 1 this poses no problems. �

Proof of lemma 3. Keeping in mind that �out
t evolves according to the free time evolution,

i.e.

�out
t = (2π it)−

3
2

∫
R

3
ei |q−y|2

2t �out
0 (y) d3y = (2π)−

3
2

∫
R

3
ei(k·q− k2 t

2 )�̂out
0 (k) d3k,

(17) is a straightforward calculation.
The estimates in (18a) and (18b) were done by Dürr, Moser and Pickl in [12]

(equations (17) and (18)). Their α is our �out.
To prove (19) we use that by (15) and (17)∥∥�ac

t − ϕ1(·, t)
∥∥ = ∥∥�ac

t − �out
t

∥∥ + ‖ϕ2(·, t)‖.
For the first term we use the definition of the outgoing asymptote �out

t = W−1
+ �ac

t and get

lim
t→∞

∥∥�ac
t − �out

t

∥∥ = lim
t→∞

∥∥e−iHt�ac
0 − e−iH0t�out

0

∥∥
= lim

t→∞
∥∥�0 − eiHte−iH0t�out

0

∥∥ = ∥∥�ac
0 − W+�

out
0

∥∥ = 0.

The estimation of the second term is also standard (see, e.g., [8, 9]).

‖ϕ2(·, t)‖ =
∥∥∥∥(2πt)−

3
2

∫
R

n

e−i ·
t
·y(ei y2

2t − 1
)
�out

0 (y) dny

∥∥∥∥ = ∥∥F((
ei y2

2t − 1
)
�out

0 (y)
)
(·)∥∥

= ∥∥(ei ·2
2t − 1

)
�out

0

∥∥
and

(
ei q2

2t − 1
)
�out

0 (q) → 0 pointwise as t → ∞. Moreover,
∣∣(ei q2

2t − 1
)
�out

0 (q)
∣∣2 �

4
∣∣�out

t (q)
∣∣2 ∈ L1(R

3), so

lim
t→∞ ‖ϕ2(·, t)‖ = 0

by dominated convergence. �

Proof of lemma 4. Let T > 0. Since
∣∣j�pp

(q, t)
∣∣ = ∣∣Im (

�
pp
t (q)∗∇�

pp
t (q)

)∣∣ �∣∣�pp
t (q)

∣∣∣∣∇�
pp
t (q)

∣∣ (39) immediately follows from definition 3.
To get bounds on

j�ac
(q, t) = Im

(
�ac

t (q)∗∇�ac
t (q)

)
resp.

∣∣�ac
t (q)

∣∣2

and

jm(q, t) = Im
(
�pp

t (q)∗∇�ac
t (q) + �ac

t (q)∗∇�pp
t (q)

)
resp.

M(q, t) = 2 Re
(
�pp

t (q)∗�ac
t (q)

)
we need to estimate �ac and ∇�ac. According to lemma 1 there exits some C < ∞ such that∣∣�̂out

0 (k)
∣∣ � C|k|−r for all r ∈ {0, 1, . . . , 5}. Therefore, using repeatedly definition 3, lemmas

2 and 3 we obtain for all t � T , |q| big enough, r ∈ {0, 1, . . . , 5} and some suitable CT < ∞∣∣�ac
t (q)

∣∣ � |ϕ1(q, t)| + |ϕ2(q, t)| + |ϕ3(q, t)| � t−
3
2

∣∣∣�̂out
0

(q

t

)∣∣∣ + Ct−2 +
CT

|q|(t + |q|)
� CT

(
t−

3
2

(
t

|q|
)r

+ t−2 +
1

|q|(t + |q|)
)
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and∣∣∇�ac
t (q)

∣∣ �
∣∣∣∇�out

t (q) − i
q

t
ϕ1(q, t)

∣∣∣ +
|q|
t

|ϕ1(q, t)| + |ϕ3(q, t)|

� CT

(
t−

3
2

(
t

|q|
)r−1

+ t−2 +
1

|q|(t + |q|)

)
.

For r = 0, resp. r = 1 this and definition 3 yield (40) and (41). �
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[12] Dürr D, Moser T and Pickl P 2004 The flux-across-surfaces theorem under conditions on the scattering state
Preprint math-ph/0408014, submitted

[13] Ikebe T 1960 Eigenfunction expansion associated with the Schrödinger operators and their applications to
scattering theory Arch. Rat. Mech. Anal. 5 1–34

[14] Jensen A and Kato T 1979 Spectral properties of Schrödinger operators and time-decay of the wave functions
Duke Math. J. 46 583–611

[15] Perry P A 1983 Scattering Theory by the Enss Method (Mathematical Reports vol 1, part 1) (New York:
Harwood)

[16] Ruelle D 1969 A remark on bound states in potential-scattering theory Nuovo Cimento A 61 655–62
[17] Shucker D S 1980 Stochastic mechanics of systems with zero potential J. Funct. Anal. 38 146–55
[18] Simon B 1982 Schrödinger semigroups Bull. Am. Math. Soc. 7 447–526
[19] Simon B 2000 Schrödinger operators in the twentieth century J. Math. Phys. 41 3523–55
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